Cargando…

Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification

The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yuanwei, Wang, Yamei, Fan, Jialu, Zhu, Guoxing, Lu, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704764/
https://www.ncbi.nlm.nih.gov/pubmed/36374932
http://dx.doi.org/10.1371/journal.ppat.1010976
_version_ 1784840125836951552
author Zhang, Yuanwei
Wang, Yamei
Fan, Jialu
Zhu, Guoxing
Lu, Ling
author_facet Zhang, Yuanwei
Wang, Yamei
Fan, Jialu
Zhu, Guoxing
Lu, Ling
author_sort Zhang, Yuanwei
collection PubMed
description The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) modification of tRNA wobble uridine (U(34)), and the overexpression of tRNA(Gln)(UUG) and tRNA(Glu)(UUC), which normally harbor mcm(5)s(2)U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U(34) tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.
format Online
Article
Text
id pubmed-9704764
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-97047642022-11-29 Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification Zhang, Yuanwei Wang, Yamei Fan, Jialu Zhu, Guoxing Lu, Ling PLoS Pathog Research Article The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC–MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) modification of tRNA wobble uridine (U(34)), and the overexpression of tRNA(Gln)(UUG) and tRNA(Glu)(UUC), which normally harbor mcm(5)s(2)U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U(34) tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens. Public Library of Science 2022-11-14 /pmc/articles/PMC9704764/ /pubmed/36374932 http://dx.doi.org/10.1371/journal.ppat.1010976 Text en © 2022 Zhang et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zhang, Yuanwei
Wang, Yamei
Fan, Jialu
Zhu, Guoxing
Lu, Ling
Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title_full Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title_fullStr Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title_full_unstemmed Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title_short Aspergillus fumigatus Elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine tRNA modification
title_sort aspergillus fumigatus elongator complex subunit 3 affects hyphal growth, adhesion and virulence through wobble uridine trna modification
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704764/
https://www.ncbi.nlm.nih.gov/pubmed/36374932
http://dx.doi.org/10.1371/journal.ppat.1010976
work_keys_str_mv AT zhangyuanwei aspergillusfumigatuselongatorcomplexsubunit3affectshyphalgrowthadhesionandvirulencethroughwobbleuridinetrnamodification
AT wangyamei aspergillusfumigatuselongatorcomplexsubunit3affectshyphalgrowthadhesionandvirulencethroughwobbleuridinetrnamodification
AT fanjialu aspergillusfumigatuselongatorcomplexsubunit3affectshyphalgrowthadhesionandvirulencethroughwobbleuridinetrnamodification
AT zhuguoxing aspergillusfumigatuselongatorcomplexsubunit3affectshyphalgrowthadhesionandvirulencethroughwobbleuridinetrnamodification
AT luling aspergillusfumigatuselongatorcomplexsubunit3affectshyphalgrowthadhesionandvirulencethroughwobbleuridinetrnamodification