Cargando…
DNA methylation-based classification of sinonasal tumors
The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation pattern...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705411/ https://www.ncbi.nlm.nih.gov/pubmed/36443295 http://dx.doi.org/10.1038/s41467-022-34815-3 |
_version_ | 1784840278390079488 |
---|---|
author | Jurmeister, Philipp Glöß, Stefanie Roller, Renée Leitheiser, Maximilian Schmid, Simone Mochmann, Liliana H. Payá Capilla, Emma Fritz, Rebecca Dittmayer, Carsten Friedrich, Corinna Thieme, Anne Keyl, Philipp Jarosch, Armin Schallenberg, Simon Bläker, Hendrik Hoffmann, Inga Vollbrecht, Claudia Lehmann, Annika Hummel, Michael Heim, Daniel Haji, Mohamed Harter, Patrick Englert, Benjamin Frank, Stephan Hench, Jürgen Paulus, Werner Hasselblatt, Martin Hartmann, Wolfgang Dohmen, Hildegard Keber, Ursula Jank, Paul Denkert, Carsten Stadelmann, Christine Bremmer, Felix Richter, Annika Wefers, Annika Ribbat-Idel, Julika Perner, Sven Idel, Christian Chiariotti, Lorenzo Della Monica, Rosa Marinelli, Alfredo Schüller, Ulrich Bockmayr, Michael Liu, Jacklyn Lund, Valerie J. Forster, Martin Lechner, Matt Lorenzo-Guerra, Sara L. Hermsen, Mario Johann, Pascal D. Agaimy, Abbas Seegerer, Philipp Koch, Arend Heppner, Frank Pfister, Stefan M. Jones, David T. W. Sill, Martin von Deimling, Andreas Snuderl, Matija Müller, Klaus-Robert Forgó, Erna Howitt, Brooke E. Mertins, Philipp Klauschen, Frederick Capper, David |
author_facet | Jurmeister, Philipp Glöß, Stefanie Roller, Renée Leitheiser, Maximilian Schmid, Simone Mochmann, Liliana H. Payá Capilla, Emma Fritz, Rebecca Dittmayer, Carsten Friedrich, Corinna Thieme, Anne Keyl, Philipp Jarosch, Armin Schallenberg, Simon Bläker, Hendrik Hoffmann, Inga Vollbrecht, Claudia Lehmann, Annika Hummel, Michael Heim, Daniel Haji, Mohamed Harter, Patrick Englert, Benjamin Frank, Stephan Hench, Jürgen Paulus, Werner Hasselblatt, Martin Hartmann, Wolfgang Dohmen, Hildegard Keber, Ursula Jank, Paul Denkert, Carsten Stadelmann, Christine Bremmer, Felix Richter, Annika Wefers, Annika Ribbat-Idel, Julika Perner, Sven Idel, Christian Chiariotti, Lorenzo Della Monica, Rosa Marinelli, Alfredo Schüller, Ulrich Bockmayr, Michael Liu, Jacklyn Lund, Valerie J. Forster, Martin Lechner, Matt Lorenzo-Guerra, Sara L. Hermsen, Mario Johann, Pascal D. Agaimy, Abbas Seegerer, Philipp Koch, Arend Heppner, Frank Pfister, Stefan M. Jones, David T. W. Sill, Martin von Deimling, Andreas Snuderl, Matija Müller, Klaus-Robert Forgó, Erna Howitt, Brooke E. Mertins, Philipp Klauschen, Frederick Capper, David |
author_sort | Jurmeister, Philipp |
collection | PubMed |
description | The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs. |
format | Online Article Text |
id | pubmed-9705411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-97054112022-11-30 DNA methylation-based classification of sinonasal tumors Jurmeister, Philipp Glöß, Stefanie Roller, Renée Leitheiser, Maximilian Schmid, Simone Mochmann, Liliana H. Payá Capilla, Emma Fritz, Rebecca Dittmayer, Carsten Friedrich, Corinna Thieme, Anne Keyl, Philipp Jarosch, Armin Schallenberg, Simon Bläker, Hendrik Hoffmann, Inga Vollbrecht, Claudia Lehmann, Annika Hummel, Michael Heim, Daniel Haji, Mohamed Harter, Patrick Englert, Benjamin Frank, Stephan Hench, Jürgen Paulus, Werner Hasselblatt, Martin Hartmann, Wolfgang Dohmen, Hildegard Keber, Ursula Jank, Paul Denkert, Carsten Stadelmann, Christine Bremmer, Felix Richter, Annika Wefers, Annika Ribbat-Idel, Julika Perner, Sven Idel, Christian Chiariotti, Lorenzo Della Monica, Rosa Marinelli, Alfredo Schüller, Ulrich Bockmayr, Michael Liu, Jacklyn Lund, Valerie J. Forster, Martin Lechner, Matt Lorenzo-Guerra, Sara L. Hermsen, Mario Johann, Pascal D. Agaimy, Abbas Seegerer, Philipp Koch, Arend Heppner, Frank Pfister, Stefan M. Jones, David T. W. Sill, Martin von Deimling, Andreas Snuderl, Matija Müller, Klaus-Robert Forgó, Erna Howitt, Brooke E. Mertins, Philipp Klauschen, Frederick Capper, David Nat Commun Article The diagnosis of sinonasal tumors is challenging due to a heterogeneous spectrum of various differential diagnoses as well as poorly defined, disputed entities such as sinonasal undifferentiated carcinomas (SNUCs). In this study, we apply a machine learning algorithm based on DNA methylation patterns to classify sinonasal tumors with clinical-grade reliability. We further show that sinonasal tumors with SNUC morphology are not as undifferentiated as their current terminology suggests but rather reassigned to four distinct molecular classes defined by epigenetic, mutational and proteomic profiles. This includes two classes with neuroendocrine differentiation, characterized by IDH2 or SMARCA4/ARID1A mutations with an overall favorable clinical course, one class composed of highly aggressive SMARCB1-deficient carcinomas and another class with tumors that represent potentially previously misclassified adenoid cystic carcinomas. Our findings can aid in improving the diagnostic classification of sinonasal tumors and could help to change the current perception of SNUCs. Nature Publishing Group UK 2022-11-28 /pmc/articles/PMC9705411/ /pubmed/36443295 http://dx.doi.org/10.1038/s41467-022-34815-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Jurmeister, Philipp Glöß, Stefanie Roller, Renée Leitheiser, Maximilian Schmid, Simone Mochmann, Liliana H. Payá Capilla, Emma Fritz, Rebecca Dittmayer, Carsten Friedrich, Corinna Thieme, Anne Keyl, Philipp Jarosch, Armin Schallenberg, Simon Bläker, Hendrik Hoffmann, Inga Vollbrecht, Claudia Lehmann, Annika Hummel, Michael Heim, Daniel Haji, Mohamed Harter, Patrick Englert, Benjamin Frank, Stephan Hench, Jürgen Paulus, Werner Hasselblatt, Martin Hartmann, Wolfgang Dohmen, Hildegard Keber, Ursula Jank, Paul Denkert, Carsten Stadelmann, Christine Bremmer, Felix Richter, Annika Wefers, Annika Ribbat-Idel, Julika Perner, Sven Idel, Christian Chiariotti, Lorenzo Della Monica, Rosa Marinelli, Alfredo Schüller, Ulrich Bockmayr, Michael Liu, Jacklyn Lund, Valerie J. Forster, Martin Lechner, Matt Lorenzo-Guerra, Sara L. Hermsen, Mario Johann, Pascal D. Agaimy, Abbas Seegerer, Philipp Koch, Arend Heppner, Frank Pfister, Stefan M. Jones, David T. W. Sill, Martin von Deimling, Andreas Snuderl, Matija Müller, Klaus-Robert Forgó, Erna Howitt, Brooke E. Mertins, Philipp Klauschen, Frederick Capper, David DNA methylation-based classification of sinonasal tumors |
title | DNA methylation-based classification of sinonasal tumors |
title_full | DNA methylation-based classification of sinonasal tumors |
title_fullStr | DNA methylation-based classification of sinonasal tumors |
title_full_unstemmed | DNA methylation-based classification of sinonasal tumors |
title_short | DNA methylation-based classification of sinonasal tumors |
title_sort | dna methylation-based classification of sinonasal tumors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705411/ https://www.ncbi.nlm.nih.gov/pubmed/36443295 http://dx.doi.org/10.1038/s41467-022-34815-3 |
work_keys_str_mv | AT jurmeisterphilipp dnamethylationbasedclassificationofsinonasaltumors AT gloßstefanie dnamethylationbasedclassificationofsinonasaltumors AT rollerrenee dnamethylationbasedclassificationofsinonasaltumors AT leitheisermaximilian dnamethylationbasedclassificationofsinonasaltumors AT schmidsimone dnamethylationbasedclassificationofsinonasaltumors AT mochmannlilianah dnamethylationbasedclassificationofsinonasaltumors AT payacapillaemma dnamethylationbasedclassificationofsinonasaltumors AT fritzrebecca dnamethylationbasedclassificationofsinonasaltumors AT dittmayercarsten dnamethylationbasedclassificationofsinonasaltumors AT friedrichcorinna dnamethylationbasedclassificationofsinonasaltumors AT thiemeanne dnamethylationbasedclassificationofsinonasaltumors AT keylphilipp dnamethylationbasedclassificationofsinonasaltumors AT jaroscharmin dnamethylationbasedclassificationofsinonasaltumors AT schallenbergsimon dnamethylationbasedclassificationofsinonasaltumors AT blakerhendrik dnamethylationbasedclassificationofsinonasaltumors AT hoffmanninga dnamethylationbasedclassificationofsinonasaltumors AT vollbrechtclaudia dnamethylationbasedclassificationofsinonasaltumors AT lehmannannika dnamethylationbasedclassificationofsinonasaltumors AT hummelmichael dnamethylationbasedclassificationofsinonasaltumors AT heimdaniel dnamethylationbasedclassificationofsinonasaltumors AT hajimohamed dnamethylationbasedclassificationofsinonasaltumors AT harterpatrick dnamethylationbasedclassificationofsinonasaltumors AT englertbenjamin dnamethylationbasedclassificationofsinonasaltumors AT frankstephan dnamethylationbasedclassificationofsinonasaltumors AT henchjurgen dnamethylationbasedclassificationofsinonasaltumors AT pauluswerner dnamethylationbasedclassificationofsinonasaltumors AT hasselblattmartin dnamethylationbasedclassificationofsinonasaltumors AT hartmannwolfgang dnamethylationbasedclassificationofsinonasaltumors AT dohmenhildegard dnamethylationbasedclassificationofsinonasaltumors AT keberursula dnamethylationbasedclassificationofsinonasaltumors AT jankpaul dnamethylationbasedclassificationofsinonasaltumors AT denkertcarsten dnamethylationbasedclassificationofsinonasaltumors AT stadelmannchristine dnamethylationbasedclassificationofsinonasaltumors AT bremmerfelix dnamethylationbasedclassificationofsinonasaltumors AT richterannika dnamethylationbasedclassificationofsinonasaltumors AT wefersannika dnamethylationbasedclassificationofsinonasaltumors AT ribbatideljulika dnamethylationbasedclassificationofsinonasaltumors AT pernersven dnamethylationbasedclassificationofsinonasaltumors AT idelchristian dnamethylationbasedclassificationofsinonasaltumors AT chiariottilorenzo dnamethylationbasedclassificationofsinonasaltumors AT dellamonicarosa dnamethylationbasedclassificationofsinonasaltumors AT marinellialfredo dnamethylationbasedclassificationofsinonasaltumors AT schullerulrich dnamethylationbasedclassificationofsinonasaltumors AT bockmayrmichael dnamethylationbasedclassificationofsinonasaltumors AT liujacklyn dnamethylationbasedclassificationofsinonasaltumors AT lundvaleriej dnamethylationbasedclassificationofsinonasaltumors AT forstermartin dnamethylationbasedclassificationofsinonasaltumors AT lechnermatt dnamethylationbasedclassificationofsinonasaltumors AT lorenzoguerrasaral dnamethylationbasedclassificationofsinonasaltumors AT hermsenmario dnamethylationbasedclassificationofsinonasaltumors AT johannpascald dnamethylationbasedclassificationofsinonasaltumors AT agaimyabbas dnamethylationbasedclassificationofsinonasaltumors AT seegererphilipp dnamethylationbasedclassificationofsinonasaltumors AT kocharend dnamethylationbasedclassificationofsinonasaltumors AT heppnerfrank dnamethylationbasedclassificationofsinonasaltumors AT pfisterstefanm dnamethylationbasedclassificationofsinonasaltumors AT jonesdavidtw dnamethylationbasedclassificationofsinonasaltumors AT sillmartin dnamethylationbasedclassificationofsinonasaltumors AT vondeimlingandreas dnamethylationbasedclassificationofsinonasaltumors AT snuderlmatija dnamethylationbasedclassificationofsinonasaltumors AT mullerklausrobert dnamethylationbasedclassificationofsinonasaltumors AT forgoerna dnamethylationbasedclassificationofsinonasaltumors AT howittbrookee dnamethylationbasedclassificationofsinonasaltumors AT mertinsphilipp dnamethylationbasedclassificationofsinonasaltumors AT klauschenfrederick dnamethylationbasedclassificationofsinonasaltumors AT capperdavid dnamethylationbasedclassificationofsinonasaltumors |