Cargando…
Using deep learning to safely exclude lesions with only ultrafast breast MRI to shorten acquisition and reading time
OBJECTIVES: To investigate the feasibility of automatically identifying normal scans in ultrafast breast MRI with artificial intelligence (AI) to increase efficiency and reduce workload. METHODS: In this retrospective analysis, 837 breast MRI examinations performed on 438 women from April 2016 to Oc...
Autores principales: | Jing, Xueping, Wielema, Mirjam, Cornelissen, Ludo J., van Gent, Margo, Iwema, Willie M., Zheng, Sunyi, Sijens, Paul E., Oudkerk, Matthijs, Dorrius, Monique D., van Ooijen, Peter M.A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705471/ https://www.ncbi.nlm.nih.gov/pubmed/35614363 http://dx.doi.org/10.1007/s00330-022-08863-8 |
Ejemplares similares
-
Breast Tumor Identification in Ultrafast MRI Using Temporal and Spatial Information
por: Jing, Xueping, et al.
Publicado: (2022) -
Applications of artificial intelligence (AI) in diagnostic radiology: a technography study
por: Rezazade Mehrizi, Mohammad Hosein, et al.
Publicado: (2020) -
Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification
por: Zheng, Sunyi, et al.
Publicado: (2020) -
Diagnostic performance of an algorithm for automated collateral scoring on computed tomography angiography
por: Wolff, Lennard, et al.
Publicado: (2022) -
Artificial intelligence in radiology: 100 commercially available products and their scientific evidence
por: van Leeuwen, Kicky G., et al.
Publicado: (2021)