Cargando…

Monotone Circuit Lower Bounds from Robust Sunflowers

Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51...

Descripción completa

Detalles Bibliográficos
Autores principales: Cavalar, Bruno Pasqualotto, Kumar, Mrinal, Rossman, Benjamin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705498/
https://www.ncbi.nlm.nih.gov/pubmed/36465838
http://dx.doi.org/10.1007/s00453-022-01000-3
Descripción
Sumario:Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1–13, 2018), and recent advances on the Erdős-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an [Formula: see text] lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known [Formula: see text] due to Andreev (Algebra and Logic, 26:1–18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an [Formula: see text] lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an [Formula: see text] lower bound on the monotone circuit size of the CLIQUE function for all [Formula: see text] , strengthening the bound of Alon and Boppana (Combinatorica, 7:1–22, 1987).