Cargando…
Monotone Circuit Lower Bounds from Robust Sunflowers
Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705498/ https://www.ncbi.nlm.nih.gov/pubmed/36465838 http://dx.doi.org/10.1007/s00453-022-01000-3 |
_version_ | 1784840297788735488 |
---|---|
author | Cavalar, Bruno Pasqualotto Kumar, Mrinal Rossman, Benjamin |
author_facet | Cavalar, Bruno Pasqualotto Kumar, Mrinal Rossman, Benjamin |
author_sort | Cavalar, Bruno Pasqualotto |
collection | PubMed |
description | Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1–13, 2018), and recent advances on the Erdős-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an [Formula: see text] lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known [Formula: see text] due to Andreev (Algebra and Logic, 26:1–18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an [Formula: see text] lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an [Formula: see text] lower bound on the monotone circuit size of the CLIQUE function for all [Formula: see text] , strengthening the bound of Alon and Boppana (Combinatorica, 7:1–22, 1987). |
format | Online Article Text |
id | pubmed-9705498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-97054982022-11-30 Monotone Circuit Lower Bounds from Robust Sunflowers Cavalar, Bruno Pasqualotto Kumar, Mrinal Rossman, Benjamin Algorithmica Article Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity Rossman (SIAM J. Comput. 43:256–279, 2014), DNF sparsification Gopalan et al. (Comput. Complex. 22:275–310 2013), randomness extractors Li et al. (In: APPROX-RANDOM, LIPIcs 116:51:1–13, 2018), and recent advances on the Erdős-Rado sunflower conjecture Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) Lovett et al. (From dnf compression to sunflower theorems via regularity, 2019) Rao (Discrete Anal. 8,2020). The recent breakthrough of Alweiss, Lovett, Wu and Zhang Alweiss et al. (In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC. Association for Computing Machinery, New York, NY, USA, 2020) gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an [Formula: see text] lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known [Formula: see text] due to Andreev (Algebra and Logic, 26:1–18, 1987) and Harnik and Raz (In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000). We also show an [Formula: see text] lower bound on the monotone arithmetic circuit size of a related polynomial via a very simple proof. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an [Formula: see text] lower bound on the monotone circuit size of the CLIQUE function for all [Formula: see text] , strengthening the bound of Alon and Boppana (Combinatorica, 7:1–22, 1987). Springer US 2022-07-14 2022 /pmc/articles/PMC9705498/ /pubmed/36465838 http://dx.doi.org/10.1007/s00453-022-01000-3 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Cavalar, Bruno Pasqualotto Kumar, Mrinal Rossman, Benjamin Monotone Circuit Lower Bounds from Robust Sunflowers |
title | Monotone Circuit Lower Bounds from Robust Sunflowers |
title_full | Monotone Circuit Lower Bounds from Robust Sunflowers |
title_fullStr | Monotone Circuit Lower Bounds from Robust Sunflowers |
title_full_unstemmed | Monotone Circuit Lower Bounds from Robust Sunflowers |
title_short | Monotone Circuit Lower Bounds from Robust Sunflowers |
title_sort | monotone circuit lower bounds from robust sunflowers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705498/ https://www.ncbi.nlm.nih.gov/pubmed/36465838 http://dx.doi.org/10.1007/s00453-022-01000-3 |
work_keys_str_mv | AT cavalarbrunopasqualotto monotonecircuitlowerboundsfromrobustsunflowers AT kumarmrinal monotonecircuitlowerboundsfromrobustsunflowers AT rossmanbenjamin monotonecircuitlowerboundsfromrobustsunflowers |