Cargando…
GAPCNN with HyPar: Global Average Pooling convolutional neural network with novel NNLU activation function and HYBRID parallelism
With the increasing demand for deep learning in the last few years, CNNs have been widely used in many applications and have gained interest in classification, regression, and image recognition tasks. The training of these deep neural networks is compute-intensive and takes days or even weeks to tra...
Autores principales: | Habib, Gousia, Qureshi, Shaima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705740/ https://www.ncbi.nlm.nih.gov/pubmed/36457992 http://dx.doi.org/10.3389/fncom.2022.1004988 |
Ejemplares similares
-
HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training with TensorFlow
por: Awan, Ammar Ahmad, et al.
Publicado: (2020) -
ReHypar: A Recursive Hybrid Chunk Partitioning Method Using NAND-Flash Memory SSD
por: No, Jaechun, et al.
Publicado: (2014) -
HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks
por: Kim, Kyung-Soo, et al.
Publicado: (2021) -
Serial and parallel convolutional neural network schemes for NFDM signals
por: Zhang, Wen Qi, et al.
Publicado: (2022) -
Electrical synapses for a pooling layer of the convolutional neural network in retinas
por: Tsukamoto, Yoshihiko
Publicado: (2023)