Cargando…

Advances and challenges in automated malaria diagnosis using digital microscopy imaging with artificial intelligence tools: A review

Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health O...

Descripción completa

Detalles Bibliográficos
Autores principales: Maturana, Carles Rubio, de Oliveira, Allisson Dantas, Nadal, Sergi, Bilalli, Besim, Serrat, Francesc Zarzuela, Soley, Mateu Espasa, Igual, Elena Sulleiro, Bosch, Mercedes, Lluch, Anna Veiga, Abelló, Alberto, López-Codina, Daniel, Suñé, Tomàs Pumarola, Clols, Elisa Sayrol, Joseph-Munné, Joan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705958/
https://www.ncbi.nlm.nih.gov/pubmed/36458185
http://dx.doi.org/10.3389/fmicb.2022.1006659
Descripción
Sumario:Malaria is an infectious disease caused by parasites of the genus Plasmodium spp. It is transmitted to humans by the bite of an infected female Anopheles mosquito. It is the most common disease in resource-poor settings, with 241 million malaria cases reported in 2020 according to the World Health Organization. Optical microscopy examination of blood smears is the gold standard technique for malaria diagnosis; however, it is a time-consuming method and a well-trained microscopist is needed to perform the microbiological diagnosis. New techniques based on digital imaging analysis by deep learning and artificial intelligence methods are a challenging alternative tool for the diagnosis of infectious diseases. In particular, systems based on Convolutional Neural Networks for image detection of the malaria parasites emulate the microscopy visualization of an expert. Microscope automation provides a fast and low-cost diagnosis, requiring less supervision. Smartphones are a suitable option for microscopic diagnosis, allowing image capture and software identification of parasites. In addition, image analysis techniques could be a fast and optimal solution for the diagnosis of malaria, tuberculosis, or Neglected Tropical Diseases in endemic areas with low resources. The implementation of automated diagnosis by using smartphone applications and new digital imaging technologies in low-income areas is a challenge to achieve. Moreover, automating the movement of the microscope slide and image autofocusing of the samples by hardware implementation would systemize the procedure. These new diagnostic tools would join the global effort to fight against pandemic malaria and other infectious and poverty-related diseases.