Cargando…
4,4′-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity
Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C(30) carotenoid produced by some Lactobacillus species, and Lacto...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Microbiology and Biotechnology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706005/ https://www.ncbi.nlm.nih.gov/pubmed/33148942 http://dx.doi.org/10.4014/jmb.2010.10022 |
Sumario: | Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C(30) carotenoid produced by some Lactobacillus species, and Lactobacillus plantarum is the main species producing it. In this study, the antioxidant activity of 4,4'-diaponeurosporene extracted from L. plantarum subsp. plantarum KCCP11226 was examined. Maximum carotenoid content (0.74 ± 0.2 at A(470)) was obtained at a relatively low temperature (20°C). The DPPH radical scavenging ability of 4,4'-diaponeurosporene (1 mM) was approximately 1.7-fold higher than that of butylated hydroxytoluene (BHT), a well-known antioxidant food additive. In addition, the ABTS radical scavenging ability was shown to be 2.3- to 7.5-fold higher than that of BHT at the range of concentration from 0.25 mM to 1 mM. The FRAP analysis confirmed that 4,4'- diaponeurosporene (0.25 mM) was able to reduce Fe(3+) by 8.0-fold higher than that of BHT. Meanwhile, 4,4'-diaponeurosporene has been confirmed to be highly resistant to various external stresses (acid/bile, high temperature, and lysozyme conditions). In conclusion, L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a functional antioxidant, may be a potentially useful strain for the development of functional probiotic industries. |
---|