Cargando…

C1q/TNF-related protein-2 improved angiogenesis to protect myocardial function during ischaemia‒reperfusion

BACKGROUND: Collateral growth plays an important role in the recovery of acute myocardial infarction. C1q/TNF-related protein-2 (CTRP2), a CTRP family member, showed some protective effects on cell survival. In this study, the relationship between CTRP2 and collateral growth was examined. METHODS: C...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Mingfang, Wu, Qi-Hong, Yang, Ke, Luo, Yukun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706074/
https://www.ncbi.nlm.nih.gov/pubmed/36409464
http://dx.doi.org/10.1177/14791641221137355
Descripción
Sumario:BACKGROUND: Collateral growth plays an important role in the recovery of acute myocardial infarction. C1q/TNF-related protein-2 (CTRP2), a CTRP family member, showed some protective effects on cell survival. In this study, the relationship between CTRP2 and collateral growth was examined. METHODS: C57BL/6 mice were subjected to myocardial ischaemia/reperfusion (I/R), and the expression of CTRP2 and the effect of CTRP2 on infarction size, cardiac function and angiogenesis were examined. The ischaemic hindlimb model was also used to examine the effect of CTRP2. In vitro, CTRP2-mediated regulation of angiogenesis, AKT activation and VEGFR2 expression in endothelial cells was examined. The CTRP2 level associated with good collateral growth was observed in a cohort. RESULTS: I/R reduced CTRP2 expression, and intraperitoneal injection of recombinant CTRP2 protein improved infarction size, cardiac function and angiogenesis. Overexpression of CTRP2 promoted blood refusion and collateral growth in ischaemic hindlimb mice. In vitro, CTRP2 enhanced tube formation and migration in a dose-dependent manner, while CTRP2 increased AKT phosphorylation and VEGFR2 expression. In an observational clinical cohort, CTRP2 levels were significantly increased in patients with good collateral growth, and CTRP2 was negatively associated with poor collateral growth in patients. CONCLUSION: CTRP2 improved cardiac function by promoting collateral growth by promoting AKT-VEGFR2.