Cargando…

Comparative Antioxidant and Anti-gout Activities of Citrullus colocynthis loaded Fruit Silver nanoparticles with its Ethanolic extract

BACKGROUND: The biological synthesis of silver nanoparticles (AgNPs) using plant materials is a rapidly developing method with several alternative medical applications. This comparative study of ethanolic fruit extract of Citrullus colocynthis (C. colocynthis) (EFECC) and synthesized silver nanopart...

Descripción completa

Detalles Bibliográficos
Autores principales: Karunakaran, Suganya, Hari, Rajeswary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Avicenna Research Institute 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706249/
https://www.ncbi.nlm.nih.gov/pubmed/36504570
Descripción
Sumario:BACKGROUND: The biological synthesis of silver nanoparticles (AgNPs) using plant materials is a rapidly developing method with several alternative medical applications. This comparative study of ethanolic fruit extract of Citrullus colocynthis (C. colocynthis) (EFECC) and synthesized silver nanoparticles (CC-AgNPs) were carried out for antioxidants and anti-gout arthritic activities. METHODS: The AgNPs were synthesized using C. colocynthis fruit and its characterization was done by UV-visible spectroscopy, TEM, XRD and FT-IR. The 90% ethanol was used for extract preparation. Antioxidant activity was analyzed by DPPH and the Hydrogen Peroxide (H(2)O(2)) method. In vitro anti-arthritic activity was tested by xanthine oxidase inhibition, protein denaturation and HRBC membrane stabilization assay. RESULTS: The synthesized CC-AgNPs were confirmed by UV-vis spectroscopy and TEM images displayed spherical shapes with 10–45 nm size range. Furthermore, the functional groups and crystalline structure of CC-AgNPs were determined by FT-IR and XRD analysis. The biosynthesized CC-AgNPs exhibited an excellent free radical scavenging ability than EFECC. In anti-arthritic activity, the CC-AgNPs showed effective inhibition of xanthine oxidase production, protein denaturation, and damaged RBC membranes compared to EFECC. CONCLUSION: The antioxidant activities and in vitro anti-arthritic assays revealed that CC-AgNPs are better anti-gout agents than EFECC. This research suggested that biosynthesized silver nanoparticles from C. colocynthis fruit are an important target in the field of anti-gout drug discovery.