Cargando…

Effects of Poly-N-isopropylacrylamide Microgels Containing Antibiofilm Substances on Pseudomonas aeruginosa Isolated from Chronic Wounds

BACKGROUND: Biofilm formation helps Pseudomonas aeruginosa (P. aeruginosa) survive in various environments. Microgels can be effective in treatment of bacterial infections. The major aim of this study was to investigate effects of poly-N-isopropylacrylamide microgels (PNIPAM) on P. aeruginosa. METHO...

Descripción completa

Detalles Bibliográficos
Autores principales: Etemadinia, Akram, Seyfoori, Amir, Rahimi Foroushani, Abbas, Mazaheri Nezhad Fard, Ramin, Bakhtiari, Ronak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Avicenna Research Institute 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706250/
https://www.ncbi.nlm.nih.gov/pubmed/36504567
Descripción
Sumario:BACKGROUND: Biofilm formation helps Pseudomonas aeruginosa (P. aeruginosa) survive in various environments. Microgels can be effective in treatment of bacterial infections. The major aim of this study was to investigate effects of poly-N-isopropylacrylamide microgels (PNIPAM) on P. aeruginosa. METHODS: Totally, 100 P. aeruginosa strains were isolated from chronic wound infections. Quantitative assessments of biofilm formation and antibiotic susceptibility were carried out. Furthermore, algD, lasR, and PA2714 genes were amplified to investigate gene frequencies and expression rates. RESULTS: Significant decreases were seen in lasR expression in EDTA-treated samples. Significant decreases were observed in expression of algD and lasR treated with xylitol. Decreased expression of PA2714 was seen in samples treated with xylitol with no significance. CONCLUSION: The PNIPAM containing xylitol or EDTA could penetrate biofilms of P. aeruginosa and significantly decrease expression of lasR and algD. This can be a novel strategy in the management of chronic wounds.