Cargando…
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering
[Image: see text] Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706502/ https://www.ncbi.nlm.nih.gov/pubmed/36108106 http://dx.doi.org/10.1021/acs.chemrev.1c00798 |
_version_ | 1784840518784516096 |
---|---|
author | Rojek, Katarzyna O. Ćwiklińska, Monika Kuczak, Julia Guzowski, Jan |
author_facet | Rojek, Katarzyna O. Ćwiklińska, Monika Kuczak, Julia Guzowski, Jan |
author_sort | Rojek, Katarzyna O. |
collection | PubMed |
description | [Image: see text] Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small “dimensionalities”: “0D” (particles), “1D” (fibers), “2D” (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core–shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled “initial conditions” for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications. |
format | Online Article Text |
id | pubmed-9706502 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-97065022022-11-30 Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering Rojek, Katarzyna O. Ćwiklińska, Monika Kuczak, Julia Guzowski, Jan Chem Rev [Image: see text] Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small “dimensionalities”: “0D” (particles), “1D” (fibers), “2D” (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core–shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled “initial conditions” for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications. American Chemical Society 2022-09-15 2022-11-23 /pmc/articles/PMC9706502/ /pubmed/36108106 http://dx.doi.org/10.1021/acs.chemrev.1c00798 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Rojek, Katarzyna O. Ćwiklińska, Monika Kuczak, Julia Guzowski, Jan Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering |
title | Microfluidic
Formulation of Topological Hydrogels
for Microtissue Engineering |
title_full | Microfluidic
Formulation of Topological Hydrogels
for Microtissue Engineering |
title_fullStr | Microfluidic
Formulation of Topological Hydrogels
for Microtissue Engineering |
title_full_unstemmed | Microfluidic
Formulation of Topological Hydrogels
for Microtissue Engineering |
title_short | Microfluidic
Formulation of Topological Hydrogels
for Microtissue Engineering |
title_sort | microfluidic
formulation of topological hydrogels
for microtissue engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706502/ https://www.ncbi.nlm.nih.gov/pubmed/36108106 http://dx.doi.org/10.1021/acs.chemrev.1c00798 |
work_keys_str_mv | AT rojekkatarzynao microfluidicformulationoftopologicalhydrogelsformicrotissueengineering AT cwiklinskamonika microfluidicformulationoftopologicalhydrogelsformicrotissueengineering AT kuczakjulia microfluidicformulationoftopologicalhydrogelsformicrotissueengineering AT guzowskijan microfluidicformulationoftopologicalhydrogelsformicrotissueengineering |