Cargando…
Protocol to benchmark gene expression signature scoring techniques for single-cell RNA sequencing data in cancer
Scoring gene signatures is common for bulk and single-cell RNA sequencing (scRNAseq) data. Here, using cancer as a data model, we describe steps to benchmark signature scoring techniques for scRNAseq data in the context of uneven gene dropouts. These steps include identifying and comparing deregulat...
Autores principales: | Noureen, Nighat, Wang, Xiaojing, Zheng, Siyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706629/ https://www.ncbi.nlm.nih.gov/pubmed/36595948 http://dx.doi.org/10.1016/j.xpro.2022.101877 |
Ejemplares similares
-
Signature-scoring methods developed for bulk samples are not adequate for cancer single-cell RNA sequencing data
por: Noureen, Nighat, et al.
Publicado: (2022) -
Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis
por: Xi, Nan Miles, et al.
Publicado: (2021) -
IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline
por: Knight, Connor H, et al.
Publicado: (2023) -
PCAT: an integrated portal for genomic and preclinical testing data of pediatric cancer patient-derived xenograft models
por: Yang, Juechen, et al.
Publicado: (2020) -
Protocol to obtain high-quality single-cell RNA-sequencing data from mouse liver cells using centrifugation
por: Wang, Simeng
Publicado: (2022)