Cargando…
Unsupervised machine learning based on clinical factors for the detection of coronary artery atherosclerosis in type 2 diabetes mellitus
BACKGROUND: Coronary atherosclerosis can lead to serious cardiovascular events. In type 2 diabetes (T2DM) patients, the effects of clinical factors on coronary atherosclerosis have not been fully elucidated. We used a clustering method to distinguish the population heterogeneity of T2DM and the diff...
Autores principales: | Jiang, Yu, Yang, Zhi-Gang, Wang, Jin, Shi, Rui, Han, Pei-Lun, Qian, Wen-Lei, Yan, Wei-Feng, Li, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706943/ https://www.ncbi.nlm.nih.gov/pubmed/36443722 http://dx.doi.org/10.1186/s12933-022-01700-8 |
Ejemplares similares
-
Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups
por: Flores, Alyssa M., et al.
Publicado: (2021) -
Effect of Smoking on Coronary Artery Plaques in Type 2 Diabetes Mellitus: Evaluation With Coronary Computed Tomography Angiography
por: Jiang, Yu, et al.
Publicado: (2021) -
Search for new physics using unsupervised machine learning for anomaly detection with ATLAS
por: Zhang, Rui
Publicado: (2023) -
Unsupervised machine learning for detection of faulty beam position monitors
por: Fol, Elena, et al.
Publicado: (2019) -
Detection of overdose and underdose prescriptions—An unsupervised machine learning approach
por: Nagata, Kenichiro, et al.
Publicado: (2021)