Cargando…
Pathogenicity, colonization, and innate immune response to Pasteurella multocida in rabbits
BACKGROUND: Pasteurella multocida (P. multocida) infection can cause a series of diseases in different animals and cause huge economic losses to the breeding industry. P. multocida is considered to be one of the most significant pathogens in rabbits. In order to elucidate the pathogenic mechanism an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706998/ https://www.ncbi.nlm.nih.gov/pubmed/36447208 http://dx.doi.org/10.1186/s12917-022-03517-9 |
Sumario: | BACKGROUND: Pasteurella multocida (P. multocida) infection can cause a series of diseases in different animals and cause huge economic losses to the breeding industry. P. multocida is considered to be one of the most significant pathogens in rabbits. In order to elucidate the pathogenic mechanism and innate immune response of P. multocida, an infection experiment was carried out in this study. RESULTS: Our results showed that the clinical symptoms of rabbits were severe dyspnoea and serous nasal fluid. During the course of the disease, the deaths peaked at 2 days post infection (dpi) and mortality rate was 60%. The pathological changes of the lung, trachea, and thymus were observed. In particular, consolidation and abscesses appeared in lung. Histopathologic changes in rabbits showed edema, hemorrhage, and neutrophil infiltration in the lung. P. multocida can rapidly replicate in a variety of tissues, and the colonization in most of the tested tissues reached the maximum at 2 dpi and then decreased at 3 dpi. The number of P. multocida in lung and thymus remained high level at 3 dpi. Toll-like receptors 2 and 4 signaling pathways were activated after P. multocida infection. The expression of Il1β, Il6, Il8, and Tnf-α was significantly increased. The expression of most proinflammatory cytokines peaked at 2 dpi and decreased at 3 dpi, and the expression trend of cytokines was consistent with the colonization of P. multocida in rabbit tissues. CONCLUSIONS: The P. multocida can rapidly replicate in various tissues of rabbit and cause bacteremia after infection. TLRs signaling pathways were activated after P. multocida infection, significantly inducing the expression of proinflammatory cytokines, which is might the main cause of respiratory inflammation and septicemia. |
---|