Cargando…
Semi-supervised adversarial discriminative domain adaptation
Domain adaptation is a potential method to train a powerful deep neural network across various datasets. More precisely, domain adaptation methods train the model on training data and test that model on a completely separate dataset. The adversarial-based adaptation method became popular among other...
Autores principales: | Nguyen, Thai-Vu, Nguyen, Anh, Le, Nghia, Le, Bac |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707164/ https://www.ncbi.nlm.nih.gov/pubmed/36466775 http://dx.doi.org/10.1007/s10489-022-04288-4 |
Ejemplares similares
-
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020) -
Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas
por: Islam, Kazi Aminul, et al.
Publicado: (2020) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised Learning Approach to Generate Neuroimaging Modalities with Adversarial Training
por: Nguyen, Harrison, et al.
Publicado: (2020) -
Semi-supervised generative and discriminative adversarial learning for motor imagery-based brain–computer interface
por: Ko, Wonjun, et al.
Publicado: (2022)