Cargando…
A joint Bayesian spatiotemporal risk prediction model of COVID-19 incidence, IC admission, and death with application to Sweden
The three closely related COVID-19 outcomes of incidence, intensive care (IC) admission and death, are commonly modelled separately leading to biased estimation of the parameters and relatively poor forecasts. This paper presents a joint spatiotemporal model of the three outcomes based on weekly dat...
Autores principales: | Jaya, I Gede Nyoman Mindra, Folmer, Henk, Lundberg, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707215/ https://www.ncbi.nlm.nih.gov/pubmed/36465998 http://dx.doi.org/10.1007/s00168-022-01191-1 |
Ejemplares similares
-
Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease
por: Jaya, I. Gede Nyoman Mindra, et al.
Publicado: (2022) -
Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia
por: Jaya, I. Gede Nyoman M., et al.
Publicado: (2021) -
The Incidence of Dental Fracturing in Electroconvulsive Therapy in Sweden
por: Göterfelt, Linda, et al.
Publicado: (2020) -
Spatial and temporal analysis of hospitalized dengue patients in Bandung: demographics and risk
por: Faridah, Lia, et al.
Publicado: (2021) -
Incidence and time trends of brain metastases admissions among breast cancer patients in Sweden
por: Frisk, G, et al.
Publicado: (2012)