Cargando…
Boosting Whale Optimizer with Quasi-Oppositional Learning and Gaussian Barebone for Feature Selection and COVID-19 Image Segmentation
Whale optimization algorithm (WOA) tends to fall into the local optimum and fails to converge quickly in solving complex problems. To address the shortcomings, an improved WOA (QGBWOA) is proposed in this work. First, quasi-opposition-based learning is introduced to enhance the ability of WOA to sea...
Autores principales: | Xing, Jie, Zhao, Hanli, Chen, Huiling, Deng, Ruoxi, Xiao, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707266/ https://www.ncbi.nlm.nih.gov/pubmed/36466725 http://dx.doi.org/10.1007/s42235-022-00297-8 |
Ejemplares similares
-
An accelerated sine mapping whale optimizer for feature selection
por: Yu, Helong, et al.
Publicado: (2023) -
GCWOAS2: Multiobjective Task Scheduling Strategy Based on Gaussian Cloud-Whale Optimization in Cloud Computing
por: Ni, Lina, et al.
Publicado: (2021) -
Face Image Segmentation Using Boosted Grey Wolf Optimizer
por: Zhang, Hongliang, et al.
Publicado: (2023) -
Quasi-Concavity for Gaussian Multicast Relay Channels
por: Thakur, Mohit, et al.
Publicado: (2019) -
A Novel Method Based on Nonlinear Binary Grasshopper Whale Optimization Algorithm for Feature Selection
por: Fang, Lingling, et al.
Publicado: (2022)