Cargando…
Acute coronary syndrome risk prediction based on gradient boosted tree feature selection and recursive feature elimination: A dataset-specific modeling study
Acute coronary syndrome (ACS) is a serious cardiovascular disease that can lead to cardiac arrest if not diagnosed promptly. However, in the actual diagnosis and treatment of ACS, there will be a large number of redundant related features that interfere with the judgment of professionals. Further, e...
Autores principales: | Lin, Huizhong, Xue, Yutao, Chen, Kaizhi, Zhong, Shangping, Chen, Lianglong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707772/ https://www.ncbi.nlm.nih.gov/pubmed/36445881 http://dx.doi.org/10.1371/journal.pone.0278217 |
Ejemplares similares
-
Coronary heart disease prediction method fusing domain-adaptive transfer learning with graph convolutional networks (GCN)
por: Lin, Huizhong, et al.
Publicado: (2023) -
All-Cause Death Prediction Method for CHD Based on Graph Convolutional Networks
por: Xue, Yutao, et al.
Publicado: (2022) -
Predicting Overall Survival Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive Feature Elimination Technique
por: Karami, Golestan, et al.
Publicado: (2021) -
Feature Importance in Gradient Boosting Trees with Cross-Validation Feature Selection
por: Adler, Afek Ilay, et al.
Publicado: (2022) -
Monte Carlo Tree Search-Based Recursive Algorithm for Feature Selection in High-Dimensional Datasets
por: Chaudhry, Muhammad Umar, et al.
Publicado: (2020)