Cargando…
Local maximum synchrosqueezes form scaling-basis chirplet transform
In recent years, time-frequency analysis (TFA) methods have received widespread attention and undergone rapid development. However, traditional TFA methods cannot achieve the desired effect when dealing with nonstationary signals. Therefore, this study proposes a new TFA method called the local maxi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707797/ https://www.ncbi.nlm.nih.gov/pubmed/36445900 http://dx.doi.org/10.1371/journal.pone.0278223 |
Sumario: | In recent years, time-frequency analysis (TFA) methods have received widespread attention and undergone rapid development. However, traditional TFA methods cannot achieve the desired effect when dealing with nonstationary signals. Therefore, this study proposes a new TFA method called the local maximum synchrosqueezing scaling-basis chirplet transform (LMSBCT), which is a further improvement of the scaling-basis chirplet transform (SBCT) with energy rearrangement in frequency and can be viewed as a good combination of SBCT and local maximum synchrosqueezing transform. A better concentration in terms of the time-frequency energy and a more accurate instantaneous frequency trajectory can be achieved using LMSBCT. The time-frequency distribution of strong frequency-modulated signals and multicomponent signals can be handled well, even for signals with close signal frequencies and low signal-to-noise ratios. Numerical simulations and real experiments were conducted to prove the superiority of the proposed method over traditional methods. |
---|