Cargando…

Local maximum synchrosqueezes form scaling-basis chirplet transform

In recent years, time-frequency analysis (TFA) methods have received widespread attention and undergone rapid development. However, traditional TFA methods cannot achieve the desired effect when dealing with nonstationary signals. Therefore, this study proposes a new TFA method called the local maxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Yating, Wang, Liming, Luo, Xiuli, Han, Xingcheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707797/
https://www.ncbi.nlm.nih.gov/pubmed/36445900
http://dx.doi.org/10.1371/journal.pone.0278223
Descripción
Sumario:In recent years, time-frequency analysis (TFA) methods have received widespread attention and undergone rapid development. However, traditional TFA methods cannot achieve the desired effect when dealing with nonstationary signals. Therefore, this study proposes a new TFA method called the local maximum synchrosqueezing scaling-basis chirplet transform (LMSBCT), which is a further improvement of the scaling-basis chirplet transform (SBCT) with energy rearrangement in frequency and can be viewed as a good combination of SBCT and local maximum synchrosqueezing transform. A better concentration in terms of the time-frequency energy and a more accurate instantaneous frequency trajectory can be achieved using LMSBCT. The time-frequency distribution of strong frequency-modulated signals and multicomponent signals can be handled well, even for signals with close signal frequencies and low signal-to-noise ratios. Numerical simulations and real experiments were conducted to prove the superiority of the proposed method over traditional methods.