Cargando…
Brain-wide connectome inferences using functional connectivity MultiVariate Pattern Analyses (fc-MVPA)
Current functional Magnetic Resonance Imaging technology is able to resolve billions of individual functional connections characterizing the human connectome. Classical statistical inferential procedures attempting to make valid inferences across this many measures from a reduced set of observations...
Autor principal: | Nieto-Castanon, Alfonso |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707802/ https://www.ncbi.nlm.nih.gov/pubmed/36378714 http://dx.doi.org/10.1371/journal.pcbi.1010634 |
Ejemplares similares
-
CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave
por: Oosterhof, Nikolaas N., et al.
Publicado: (2016) -
Decoding the infant mind: Multivariate pattern analysis (MVPA) using fNIRS
por: Emberson, Lauren L., et al.
Publicado: (2017) -
Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox
por: Kuntzelman, Karl M., et al.
Publicado: (2021) -
The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data
por: Torabian, Sajjad, et al.
Publicado: (2023) -
Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal
por: Vizioli, Luca, et al.
Publicado: (2018)