Cargando…
Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm
AIMS: Paroxysmal supraventricular tachycardia (PSVT) is not detected owing to its paroxysmal nature, but it is associated with the risk of cardiovascular disease and worsens the patient quality of life. A deep learning model (DLM) was developed and validated to identify patients with PSVT during nor...
Autores principales: | Jo, Yong-Yeon, Kwon, Joon-Myoung, Jeon, Ki-Hyun, Cho, Yong-Hyeon, Shin, Jae-Hyun, Lee, Yoon-Ji, Jung, Min-Seung, Ban, Jang-Hyeon, Kim, Kyung-Hee, Lee, Soo Youn, Park, Jinsik, Oh, Byung-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707886/ https://www.ncbi.nlm.nih.gov/pubmed/36712389 http://dx.doi.org/10.1093/ehjdh/ztab025 |
Ejemplares similares
-
Artificial intelligence for detecting electrolyte imbalance using electrocardiography
por: Kwon, Joon‐myoung, et al.
Publicado: (2021) -
Twelve‐lead electrocardiography identifies the therapeutic target of paroxysmal supraventricular tachycardia
por: Matsunaga, Keiji, et al.
Publicado: (2019) -
Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms
por: Wang, Lei, et al.
Publicado: (2022) -
Artificial intelligence assessment for early detection and prediction of renal impairment using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2022) -
Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography
por: Kwon, Joon-myoung, et al.
Publicado: (2020)