Cargando…
Artificial intelligence-based detection of aortic stenosis from chest radiographs
AIMS: We aimed to develop models to detect aortic stenosis (AS) from chest radiographs—one of the most basic imaging tests—with artificial intelligence. METHODS AND RESULTS: We used 10 433 retrospectively collected digital chest radiographs from 5638 patients to train, validate, and test three deep...
Autores principales: | Ueda, Daiju, Yamamoto, Akira, Ehara, Shoichi, Iwata, Shinichi, Abo, Koji, Walston, Shannon L, Matsumoto, Toshimasa, Shimazaki, Akitoshi, Yoshiyama, Minoru, Miki, Yukio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707887/ https://www.ncbi.nlm.nih.gov/pubmed/36713993 http://dx.doi.org/10.1093/ehjdh/ztab102 |
Ejemplares similares
-
Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study
por: Ueda, Daiju, et al.
Publicado: (2021) -
Deep Learning–Based Time-to-Death Prediction Model for COVID-19 Patients Using Clinical Data and Chest Radiographs
por: Matsumoto, Toshimasa, et al.
Publicado: (2022) -
Deep learning-based algorithm for lung cancer detection on chest radiographs using the segmentation method
por: Shimazaki, Akitoshi, et al.
Publicado: (2022) -
Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis
por: Sugibayashi, Takahiro, et al.
Publicado: (2023) -
The clinical value of apex beat and electrocardiography for the detection of left ventricular hypertrophy from the standpoint of the distance factors from the heart to the chest wall: a multislice CT study
por: Ehara, Shoichi, et al.
Publicado: (2011)