Cargando…
Real-time imputation of missing predictor values in clinical practice
AIMS: Use of prediction models is widely recommended by clinical guidelines, but usually requires complete information on all predictors, which is not always available in daily practice. We aim to describe two methods for real-time handling of missing predictor values when using prediction models in...
Autores principales: | Nijman, Steven W J, Hoogland, Jeroen, Groenhof, T Katrien J, Brandjes, Menno, Jacobs, John J L, Bots, Michiel L, Asselbergs, Folkert W, Moons, Karel G M, Debray, Thomas P A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707891/ https://www.ncbi.nlm.nih.gov/pubmed/36711167 http://dx.doi.org/10.1093/ehjdh/ztaa016 |
Ejemplares similares
-
Optimizing cardiovascular risk assessment and registration in a developing cardiovascular learning health care system: Women benefit most
por: Groenhof, T. Katrien J., et al.
Publicado: (2023) -
The effect of computerized decision support systems on cardiovascular risk factors: a systematic review and meta-analysis
por: Groenhof, T. Katrien J., et al.
Publicado: (2019) -
Evaluating a cardiovascular disease risk management care continuum within a learning healthcare system: a prospective cohort study
por: Groenhof, T Katrien J, et al.
Publicado: (2020) -
Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports
por: Bagheri, Ayoub, et al.
Publicado: (2021) -
Low-Density Lipoprotein Cholesterol Target Attainment in Patients With Established Cardiovascular Disease: Analysis of Routine Care Data
por: Groenhof, T Katrien J, et al.
Publicado: (2020)