Cargando…
Applications of artificial intelligence and machine learning in heart failure
Machine learning (ML) is a sub-field of artificial intelligence that uses computer algorithms to extract patterns from raw data, acquire knowledge without human input, and apply this knowledge for various tasks. Traditional statistical methods that classify or regress data have limited capacity to h...
Autores principales: | Averbuch, Tauben, Sullivan, Kristen, Sauer, Andrew, Mamas, Mamas A, Voors, Adriaan A, Gale, Chris P, Metra, Marco, Ravindra, Neal, Van Spall, Harriette G C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707916/ https://www.ncbi.nlm.nih.gov/pubmed/36713018 http://dx.doi.org/10.1093/ehjdh/ztac025 |
Ejemplares similares
-
The LENT index predicts 30 day outcomes following hospitalization for heart failure
por: Van Spall, Harriette GC, et al.
Publicado: (2020) -
Temporal Trends and Factors Associated With the Inclusion of Patient‐Reported Outcomes in Heart Failure Randomized Controlled Trials: A Systematic Review
por: Eliya, Yousif, et al.
Publicado: (2021) -
Derivation and validation of a two‐variable index to predict 30‐day outcomes following heart failure hospitalization
por: Averbuch, Tauben, et al.
Publicado: (2021) -
Systematic review of academic bullying in medical settings: dynamics and consequences
por: Averbuch, Tauben, et al.
Publicado: (2021) -
Clinical phenogroups are more effective than left ventricular ejection fraction categories in stratifying heart failure outcomes
por: Gevaert, Andreas B., et al.
Publicado: (2021)