Cargando…
Clinical validation of an artificial intelligence-assisted algorithm for automated quantification of left ventricular ejection fraction in real time by a novel handheld ultrasound device
AIMS: We sought to evaluate the reliability and diagnostic accuracy of a novel handheld ultrasound device (HUD) with artificial intelligence (AI) assisted algorithm to automatically calculate ejection fraction (autoEF) in a real-world patient population. METHODS AND RESULTS: We studied 100 consecuti...
Autores principales: | Papadopoulou, Stella-Lida, Sachpekidis, Vasileios, Kantartzi, Vasiliki, Styliadis, Ioannis, Nihoyannopoulos, Petros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707920/ https://www.ncbi.nlm.nih.gov/pubmed/36713988 http://dx.doi.org/10.1093/ehjdh/ztac001 |
Ejemplares similares
-
Subclinical markers of cardiovascular disease predict adverse outcomes in chronic kidney disease patients with normal left ventricular ejection fraction
por: Sulemane, Samir, et al.
Publicado: (2017) -
A tricky case of cardiogenic shock: Diagnostic challenges in the COVID‐19 era
por: Sachpekidis, Vasileios, et al.
Publicado: (2020) -
A Teaching Intervention Increases the Performance of Handheld Ultrasound Devices for Assessment of Left Ventricular Ejection Fraction
por: Anilkumar, Smitha, et al.
Publicado: (2019) -
Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography
por: Hansegård, Jøger, et al.
Publicado: (2009) -
Rapid automated quantification of left ventricular ejection fraction with LV-METRIC – a novel segmentation algorithm
por: Codella, Noel CF, et al.
Publicado: (2009)