Cargando…
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
AIMS: Automated interpretation of electrocardiograms (ECGs) using deep neural networks (DNNs) has gained much attention recently. While the initial results have been encouraging, limited attention has been paid to whether such results can be trusted, which is paramount for their clinical implementat...
Autores principales: | Vranken, Jeroen F, van de Leur, Rutger R, Gupta, Deepak K, Juarez Orozco, Luis E, Hassink, Rutger J, van der Harst, Pim, Doevendans, Pieter A, Gulshad, Sadaf, van Es, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707930/ https://www.ncbi.nlm.nih.gov/pubmed/36713602 http://dx.doi.org/10.1093/ehjdh/ztab045 |
Ejemplares similares
-
Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning: Proof-of-Concept in Phospholamban Gene Mutation Carriers
por: van de Leur, Rutger R., et al.
Publicado: (2021) -
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Electrocardiogram Devices for Home Use: Technological and Clinical Scoping Review
por: Zepeda-Echavarria, Alejandra, et al.
Publicado: (2023) -
Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders( )
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy
por: Wouters, Philippe C, et al.
Publicado: (2022)