Cargando…
Artificial intelligence—electrocardiography to detect atrial fibrillation: trend of probability before and after the first episode
AIMS: Artificial intelligence (AI) enabled electrocardiography (ECG) can detect latent atrial fibrillation (AF) in patients with sinus rhythm (SR). However, the change of AI-ECG probability before and after the first AF episode is not well characterized. We sought to characterize the temporal trend...
Autores principales: | Christopoulos, Georgios, Attia, Zachi I, Van Houten, Holly K, Yao, Xiaoxi, Carter, Rickey E, Lopez-Jimenez, Francisco, Kapa, Suraj, Noseworthy, Peter A, Friedman, Paul A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707931/ https://www.ncbi.nlm.nih.gov/pubmed/36713006 http://dx.doi.org/10.1093/ehjdh/ztac023 |
Ejemplares similares
-
Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
por: Siontis, Konstantinos C., et al.
Publicado: (2021) -
Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series
por: Attia, Zachi I., et al.
Publicado: (2020) -
Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction
por: Harmon, David M, et al.
Publicado: (2022) -
Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs
por: Attia, Zachi I., et al.
Publicado: (2019) -
AI ENHANCED ECG ENABLED RAPID NON-INVASIVE EXCLUSION OF SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-COV-2) INFECTION
por: Attia, Zachi Itzhak, et al.
Publicado: (2021)