Cargando…
Deep neural networks learn by using human-selected electrocardiogram features and novel features
AIMS: We sought to investigate whether artificial intelligence (AI) and specifically deep neural networks (NNs) for electrocardiogram (ECG) signal analysis can be explained using human-selected features. We also sought to quantify such explainability and test if the AI model learns features that are...
Autores principales: | Attia, Zachi I, Lerman, Gilad, Friedman, Paul A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707937/ https://www.ncbi.nlm.nih.gov/pubmed/36713603 http://dx.doi.org/10.1093/ehjdh/ztab060 |
Ejemplares similares
-
Noninvasive assessment of dofetilide plasma concentration using a deep learning (neural network) analysis of the surface electrocardiogram: A proof of concept study
por: Attia, Zachi I., et al.
Publicado: (2018) -
Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis
por: Ito, Saki, et al.
Publicado: (2023) -
Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram
por: Harmon, David M., et al.
Publicado: (2021) -
A comprehensive artificial intelligence–enabled electrocardiogram interpretation program
por: Kashou, Anthony H., et al.
Publicado: (2020) -
External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
por: Attia, Itzhak Zachi, et al.
Publicado: (2021)