Cargando…
Atrial fibrillation risk prediction from the 12-lead electrocardiogram using digital biomarkers and deep representation learning
AIMS: This study aims to assess whether information derived from the raw 12-lead electrocardiogram (ECG) combined with clinical information is predictive of atrial fibrillation (AF) development. METHODS AND RESULTS: We use a subset of the Telehealth Network of Minas Gerais (TNMG) database consisting...
Autores principales: | Biton, Shany, Gendelman, Sheina, Ribeiro, Antônio H, Miana, Gabriela, Moreira, Carla, Ribeiro, Antonio Luiz P, Behar, Joachim A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707938/ https://www.ncbi.nlm.nih.gov/pubmed/36713102 http://dx.doi.org/10.1093/ehjdh/ztab071 |
Ejemplares similares
-
Generalizable and robust deep learning algorithm for atrial fibrillation diagnosis across geography, ages and sexes
por: Biton, Shany, et al.
Publicado: (2023) -
Fully digital self-screening for atrial fibrillation with patch electrocardiogram
por: Sandberg, Edvard Liljedahl, et al.
Publicado: (2023) -
Atrial Fibrillation and Beta Thalassemia Major: The Predictive Role of the 12-lead Electrocardiogram Analysis
por: Russo, Vincenzo, et al.
Publicado: (2014) -
Prediction model for the new onset of atrial fibrillation combining features of 24-hour Holter electrocardiogram with 12-lead electrocardiogram
por: Nishimura, Tetsuro, et al.
Publicado: (2023) -
Evaluation of Mortality in Atrial Fibrillation: Clinical Outcomes in Digital Electrocardiography (CODE) Study
por: Paixão, Gabriela M. M., et al.
Publicado: (2020)