Cargando…
Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram
AIMS : Heart failure with preserved ejection fraction (HFpEF) is a rapidly growing global health problem. To date, diagnosis of HFpEF is based on clinical, invasive, and laboratory examinations. Electrocardiographic findings may vary, and there are no known typical ECG features for HFpEF. METHODS AN...
Autores principales: | Unterhuber, Matthias, Rommel, Karl-Philipp, Kresoja, Karl-Patrik, Lurz, Julia, Kornej, Jelena, Hindricks, Gerhard, Scholz, Markus, Thiele, Holger, Lurz, Philipp |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707942/ https://www.ncbi.nlm.nih.gov/pubmed/36713109 http://dx.doi.org/10.1093/ehjdh/ztab081 |
Ejemplares similares
-
Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials
por: Kresoja, Karl-Patrik, et al.
Publicado: (2023) -
Transcriptomic Research in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives
por: Rosch, Sebastian, et al.
Publicado: (2020) -
Evaluation of phosphodiesterase 9A as a novel biomarker in heart failure with preserved ejection fraction
por: Besler, Christian, et al.
Publicado: (2021) -
Sympathomodulation in Heart Failure with High vs. Normal Ejection Fraction
por: Fengler, Karl, et al.
Publicado: (2022) -
A cardiologist’s guide to machine learning in cardiovascular disease prognosis prediction
por: Kresoja, Karl-Patrik, et al.
Publicado: (2023)