Cargando…
Applications of artificial intelligence/machine learning approaches in cardiovascular medicine: a systematic review with recommendations
AIMS: Artificial intelligence (AI) and machine learning (ML) promise vast advances in medicine. The current state of AI/ML applications in cardiovascular medicine is largely unknown. This systematic review aims to close this gap and provides recommendations for future applications. METHODS AND RESUL...
Autores principales: | Friedrich, Sarah, Groß, Stefan, König, Inke R, Engelhardt, Sandy, Bahls, Martin, Heinz, Judith, Huber, Cynthia, Kaderali, Lars, Kelm, Marcus, Leha, Andreas, Rühl, Jasmin, Schaller, Jens, Scherer, Clemens, Vollmer, Marcus, Seidler, Tim, Friede, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707954/ https://www.ncbi.nlm.nih.gov/pubmed/36713608 http://dx.doi.org/10.1093/ehjdh/ztab054 |
Ejemplares similares
-
A comparison of subgroup identification methods in clinical drug development: Simulation study and regulatory considerations
por: Huber, Cynthia, et al.
Publicado: (2019) -
Development and validation of explainable machine learning models for risk of mortality in transcatheter aortic valve implantation: TAVI risk machine scores
por: Leha, Andreas, et al.
Publicado: (2023) -
Classification of Companion Diagnostics: A New Framework for Biomarker-Driven Patient Selection
por: Huber, Cynthia, et al.
Publicado: (2021) -
Causal inference methods for small non-randomized studies: Methods and an application in COVID-19
por: Friedrich, Sarah, et al.
Publicado: (2020) -
A machine learning approach for the prediction of pulmonary hypertension
por: Leha, Andreas, et al.
Publicado: (2019)