Cargando…
Identification of undiagnosed atrial fibrillation using a machine learning risk-prediction algorithm and diagnostic testing (PULsE-AI) in primary care: a multi-centre randomized controlled trial in England
AIMS: The aim of the PULsE-AI trial was to assess the effectiveness of a machine learning risk-prediction algorithm in conjunction with diagnostic testing for identifying undiagnosed atrial fibrillation (AF) in primary care in England. METHODS AND RESULTS: Eligible participants (aged ≥30 years witho...
Autores principales: | Hill, Nathan R, Groves, Lara, Dickerson, Carissa, Ochs, Andreas, Pang, Dong, Lawton, Sarah, Hurst, Michael, Pollock, Kevin G, Sugrue, Daniel M, Tsang, Carmen, Arden, Chris, Wyn Davies, David, Martin, Anne Celine, Sandler, Belinda, Gordon, Jason, Farooqui, Usman, Clifton, David, Mallen, Christian, Rogers, Jennifer, Camm, Alan John, Cohen, Alexander T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707963/ https://www.ncbi.nlm.nih.gov/pubmed/36713002 http://dx.doi.org/10.1093/ehjdh/ztac009 |
Ejemplares similares
-
Identification of undiagnosed atrial fibrillation patients using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised controlled trial
por: Hill, Nathan R., et al.
Publicado: (2020) -
PulsRad Workshop
por: Balle, Christoph
Publicado: (2022) -
PulsRad Workshop
por: Cavazza, Marina
Publicado: (2022) -
Some Cases of Phthisis Pul.
por: Schlegel, Emil
Publicado: (1892) -
Insights into herpesvirus assembly from the structure of the pUL7:pUL51 complex
por: Butt, Benjamin G, et al.
Publicado: (2020)