Cargando…
A data mining-based cross-industry process for predicting major bleeding in mechanical circulatory support
AIMS: Over a third of patients, treated with mechanical circulatory support (MCS) for end-stage heart failure, experience major bleeding. Currently, the prediction of a major bleeding in the near future is difficult because of many contributing factors. Predictive analytics using data mining could h...
Autores principales: | Felix, Susanne E A, Bagheri, Ayoub, Ramjankhan, Faiz R, Spruit, Marco R, Oberski, Daniel, de Jonge, Nicolaas, van Laake, Linda W, Suyker, Willem J L, Asselbergs, Folkert W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707970/ https://www.ncbi.nlm.nih.gov/pubmed/36713101 http://dx.doi.org/10.1093/ehjdh/ztab082 |
Ejemplares similares
-
One year improvement of exercise capacity in patients with mechanical circulatory support as bridge to transplantation
por: Felix, Susanne E.A., et al.
Publicado: (2021) -
Outcome of mechanical circulatory support at the University Medical Centre Utrecht
por: Felix, S. E. A., et al.
Publicado: (2020) -
Automatic Prediction of Recurrence of Major Cardiovascular Events: A Text Mining Study Using Chest X-Ray Reports
por: Bagheri, Ayoub, et al.
Publicado: (2021) -
Propensity score‐based analysis of long‐term outcome of patients on HeartWare and HeartMate 3 left ventricular assist device support
por: Numan, Lieke, et al.
Publicado: (2021) -
Advanced Strategies for End-Stage Heart Failure: Combining Regenerative Approaches with LVAD, a New Horizon?
por: Tseng, Cheyenne C. S., et al.
Publicado: (2015)