Cargando…
Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders( )
AIMS: Deep neural networks (DNNs) perform excellently in interpreting electrocardiograms (ECGs), both for conventional ECG interpretation and for novel applications such as detection of reduced ejection fraction (EF). Despite these promising developments, implementation is hampered by the lack of tr...
Autores principales: | van de Leur, Rutger R, Bos, Max N, Taha, Karim, Sammani, Arjan, Yeung, Ming Wai, van Duijvenboden, Stefan, Lambiase, Pier D, Hassink, Rutger J, van der Harst, Pim, Doevendans, Pieter A, Gupta, Deepak K, van Es, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707974/ https://www.ncbi.nlm.nih.gov/pubmed/36712164 http://dx.doi.org/10.1093/ehjdh/ztac038 |
Ejemplares similares
-
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
por: Vranken, Jeroen F, et al.
Publicado: (2021) -
Discovering and Visualizing Disease-Specific Electrocardiogram Features Using Deep Learning: Proof-of-Concept in Phospholamban Gene Mutation Carriers
por: van de Leur, Rutger R., et al.
Publicado: (2021) -
Life-threatening ventricular arrhythmia prediction in patients with dilated cardiomyopathy using explainable electrocardiogram-based deep neural networks( )
por: Sammani, Arjan, et al.
Publicado: (2022) -
Electrocardiogram Devices for Home Use: Technological and Clinical Scoping Review
por: Zepeda-Echavarria, Alejandra, et al.
Publicado: (2023)