Cargando…
Echocardiographic phenogrouping by machine learning for risk stratification in the general population
AIMS : There is a need for better phenotypic characterization of the asymptomatic stages of cardiac maladaptation. We tested the hypothesis that an unsupervised clustering analysis utilizing echocardiographic indexes reflecting left heart structure and function could identify phenotypically distinct...
Autores principales: | Sabovčik, František, Cauwenberghs, Nicholas, Vens, Celine, Kuznetsova, Tatiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9707985/ https://www.ncbi.nlm.nih.gov/pubmed/36713600 http://dx.doi.org/10.1093/ehjdh/ztab042 |
Ejemplares similares
-
Improving predictive performance in incident heart failure using machine learning and multi-center data
por: Sabovčik, František, et al.
Publicado: (2022) -
Evaluation of diastole by echocardiography for detecting early cardiac dysfunction: an outcome study
por: Kuznetsova, Tatiana, et al.
Publicado: (2022) -
Proteomic profiling for detection of early‐stage heart failure in the community
por: Cauwenberghs, Nicholas, et al.
Publicado: (2021) -
Heart failure with preserved ejection fraction phenogroup classification using machine learning
por: Kyodo, Atsushi, et al.
Publicado: (2023) -
Integrative Interpretation of Cardiopulmonary Exercise Tests for Cardiovascular Outcome Prediction: A Machine Learning Approach
por: Cauwenberghs, Nicholas, et al.
Publicado: (2023)