Cargando…
Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network
AIMS: Atrial fibrillation (AF) is associated with significant morbidity but remains underdiagnosed. A 24 h ambulatory electrocardiogram (ECG) is largely used as a tool to document AF but yield remains limited. We hypothesize that a deep learning model can identify patients at risk of AF in the 2 wee...
Autores principales: | Singh, Jagmeet P, Fontanarava, Julien, de Massé, Grégoire, Carbonati, Tanner, Li, Jia, Henry, Christine, Fiorina, Laurent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708000/ https://www.ncbi.nlm.nih.gov/pubmed/36713004 http://dx.doi.org/10.1093/ehjdh/ztac014 |
Ejemplares similares
-
Evaluation of an Ambulatory ECG Analysis Platform Using Deep Neural Networks in Routine Clinical Practice
por: Fiorina, Laurent, et al.
Publicado: (2022) -
Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation–Related Stroke
por: Raghunath, Sushravya, et al.
Publicado: (2021) -
An Early Warning of Atrial Fibrillation Based on Short-Time ECG Signals
por: Zhao, Tianxia, et al.
Publicado: (2022) -
Short Single-Lead ECG Signal Delineation-Based Deep Learning: Implementation in Automatic Atrial Fibrillation Identification
por: Tutuko, Bambang, et al.
Publicado: (2022) -
Automated Atrial Fibrillation Detection with ECG
por: Wei, Ting-Ruen, et al.
Publicado: (2022)