Cargando…
Explainable machine learning predictions to support personalized cardiology strategies
AIMS: A widely practiced intervention to modify cardiac health, the effect of physical activity on older adults is likely heterogeneous. While machine learning (ML) models that combine various systemic signals may aid in predictive modelling, the inability to rationalize predictions at a patient per...
Autores principales: | Loh, De Rong, Yeo, Si Yong, Tan, Ru San, Gao, Fei, Koh, Angela S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708009/ https://www.ncbi.nlm.nih.gov/pubmed/36713989 http://dx.doi.org/10.1093/ehjdh/ztab096 |
Ejemplares similares
-
Applications of Machine Learning in Cardiology
por: Seetharam, Karthik, et al.
Publicado: (2022) -
Explainable machine learning framework to predict personalized physiological aging
por: Bernard, David, et al.
Publicado: (2023) -
Current applications of big data and machine learning in cardiology
por: Cuocolo, Renato, et al.
Publicado: (2019) -
Editorial: Non-linear analysis and machine learning in cardiology
por: Dierckx, Hans, et al.
Publicado: (2023) -
Cardio-sarcopenia: A syndrome of concern in aging
por: Loh, De Rong, et al.
Publicado: (2022)