Cargando…
From population- to patient-based prediction of in-hospital mortality in heart failure using machine learning
AIMS: Utilizing administrative data may facilitate risk prediction in heart failure inpatients. In this short report, we present different machine learning models that predict in-hospital mortality on an individual basis utilizing this widely available data source. METHODS AND RESULTS: Inpatient cas...
Autores principales: | König, Sebastian, Pellissier, Vincent, Hohenstein, Sven, Leiner, Johannes, Meier-Hellmann, Andreas, Kuhlen, Ralf, Hindricks, Gerhard, Bollmann, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708014/ https://www.ncbi.nlm.nih.gov/pubmed/36713020 http://dx.doi.org/10.1093/ehjdh/ztac012 |
Ejemplares similares
-
Expected and observed in‐hospital mortality in heart failure patients before and during the COVID‐19 pandemic: Introduction of the machine learning‐based standardized mortality ratio at Helios hospitals
por: König, Sebastian, et al.
Publicado: (2021) -
In‐hospital mortality in heart failure in Germany during the Covid‐19 pandemic
por: Bollmann, Andreas, et al.
Publicado: (2020) -
Machine learning algorithms for claims data‐based prediction of in‐hospital mortality in patients with heart failure
por: König, Sebastian, et al.
Publicado: (2021) -
A Comparative Analysis of In-Hospital Mortality per Disease Groups in Germany Before and During the COVID-19 Pandemic From 2016 to 2020
por: König, Sebastian, et al.
Publicado: (2022) -
Machine learning-derived prediction of in-hospital mortality in patients with severe acute respiratory infection: analysis of claims data from the German-wide Helios hospital network
por: Leiner, Johannes, et al.
Publicado: (2022)