Cargando…
A clinician’s guide to understanding and critically appraising machine learning studies: a checklist for Ruling Out Bias Using Standard Tools in Machine Learning (ROBUST-ML)
Developing functional machine learning (ML)-based models to address unmet clinical needs requires unique considerations for optimal clinical utility. Recent debates about the rigours, transparency, explainability, and reproducibility of ML models, terms which are defined in this article, have raised...
Autores principales: | Al-Zaiti, Salah S, Alghwiri, Alaa A, Hu, Xiao, Clermont, Gilles, Peace, Aaron, Macfarlane, Peter, Bond, Raymond |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708024/ https://www.ncbi.nlm.nih.gov/pubmed/36713011 http://dx.doi.org/10.1093/ehjdh/ztac016 |
Ejemplares similares
-
Artificial intelligence and machine learning in pediatrics and
neonatology healthcare
por: Matsushita, Felipe Yu, et al.
Publicado: (2022) -
Do You Need ‘The Machine’? Tipping in Canada Is Unconscious (Part I)
por: Chernoff, Egan J.
Publicado: (2022) -
Do You Need the Machine? Tipping in Canada Is Unconscious (Part II)
por: Chernoff, Egan J.
Publicado: (2022) -
Critical Appraisal of Guidelines for Evaluation and Certification of Specified Neurological Disabilities
por: Puri, Inder, et al.
Publicado: (2019) -
Clinical practice guidelines for psychiatrists: Indian Psychiatric Society guidelines vs. international guidelines: A critical appraisal
por: Goel, Dishanter, et al.
Publicado: (2007)