Cargando…
Improving the accuracy of single-trial fMRI response estimates using GLMsingle
Advances in artificial intelligence have inspired a paradigm shift in human neuroscience, yielding large-scale functional magnetic resonance imaging (fMRI) datasets that provide high-resolution brain responses to thousands of naturalistic visual stimuli. Because such experiments necessarily involve...
Autores principales: | Prince, Jacob S, Charest, Ian, Kurzawski, Jan W, Pyles, John A, Tarr, Michael J, Kay, Kendrick N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708069/ https://www.ncbi.nlm.nih.gov/pubmed/36444984 http://dx.doi.org/10.7554/eLife.77599 |
Ejemplares similares
-
GLMdenoise improves multivariate pattern analysis of fMRI data
por: Charest, Ian, et al.
Publicado: (2018) -
Estimating neural response functions from fMRI
por: Kumar, Sukhbinder, et al.
Publicado: (2014) -
GLMdenoise: a fast, automated technique for denoising task-based fMRI data
por: Kay, Kendrick N., et al.
Publicado: (2013) -
High Classification Accuracy for Schizophrenia with Rest and Task fMRI Data
por: Du, Wei, et al.
Publicado: (2012) -
DC Shifts-fMRI: A Supplement to Event-Related fMRI
por: Li, Qiang, et al.
Publicado: (2019)