Cargando…
N-GPETS: Neural Attention Graph-Based Pretrained Statistical Model for Extractive Text Summarization
The extractive summarization approach involves selecting the source document's salient sentences to build a summary. One of the most important aspects of extractive summarization is learning and modelling cross-sentence associations. Inspired by the popularity of Transformer-based Bidirectional...
Autores principales: | Umair, Muhammad, Alam, Iftikhar, Khan, Atif, Khan, Inayat, Ullah, Niamat, Momand, Mohammad Yusuf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708337/ https://www.ncbi.nlm.nih.gov/pubmed/36458230 http://dx.doi.org/10.1155/2022/6241373 |
Ejemplares similares
-
Text Summarization Method Based on Gated Attention Graph Neural Network
por: Huang, Jingui, et al.
Publicado: (2023) -
Graph-based extractive text summarization method for Hausa text
por: Bichi, Abdulkadir Abubakar, et al.
Publicado: (2023) -
Hotel Review Classification Based on the Text Pretraining Heterogeneous Graph Neural Network Model
por: Zhang, Liyan, et al.
Publicado: (2022) -
Movie Review Summarization Using Supervised Learning and Graph-Based Ranking Algorithm
por: Khan, Atif, et al.
Publicado: (2020) -
Advances in automatic text summarization
Publicado: (1999)