Cargando…

An integrated protein structure fitness scoring approach for identifying native-like model structures

The structural information of a protein is pivotal to comprehend its functions, protein–protein and protein–ligand interactions. There is a widening gap between the number of known protein sequences and that of experimentally determined structures. The protein structure prediction has emerged as an...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaushik, Rahul, Zhang, Kam Y.J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708444/
https://www.ncbi.nlm.nih.gov/pubmed/36467582
http://dx.doi.org/10.1016/j.csbj.2022.11.032
_version_ 1784840934257590272
author Kaushik, Rahul
Zhang, Kam Y.J.
author_facet Kaushik, Rahul
Zhang, Kam Y.J.
author_sort Kaushik, Rahul
collection PubMed
description The structural information of a protein is pivotal to comprehend its functions, protein–protein and protein–ligand interactions. There is a widening gap between the number of known protein sequences and that of experimentally determined structures. The protein structure prediction has emerged as an efficient alternative to deliver the reliable structural information of proteins. However, it remains a challenge to identify the best model among the many predicted by one or a few structure prediction methods. Here we report ProFitFun-Meta, a neural network based pure single model scoring method for assessing the quality of predicted model structures by an effective combination structural information of various backbone dihedral angle and residue surface accessibility preferences of amino acid residues with other spatial properties of protein structures. The performance of ProFitFun-Meta was validated and benchmarked against current state-of-the-art methods on the extensive datasets, comprising a Test Dataset (n = 26,604), an External Dataset (n = 40,000), and CASP14 Dataset (n = 1200). The comprehensive performance evaluation of ProFitFun-Meta demonstrated its reliability and efficiency in terms of Spearman’s (ρ) and Pearson’s (r) correlation coefficients, GDT-TS loss (g), and absolute loss (d). An improved performance over the current state-of-the-art methods and leading performers of CASP14 experiment in quality assessment category demonstrated its potential to become an integral component of computational pipelines for protein modeling and design. The minimal dependencies, high computational efficiency, and portability to various Linux and Windows OS provide an additional edge to ProFitFun-Meta for its easy implementation and applications in various regimes of computational protein folding.
format Online
Article
Text
id pubmed-9708444
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Research Network of Computational and Structural Biotechnology
record_format MEDLINE/PubMed
spelling pubmed-97084442022-12-02 An integrated protein structure fitness scoring approach for identifying native-like model structures Kaushik, Rahul Zhang, Kam Y.J. Comput Struct Biotechnol J Research Article The structural information of a protein is pivotal to comprehend its functions, protein–protein and protein–ligand interactions. There is a widening gap between the number of known protein sequences and that of experimentally determined structures. The protein structure prediction has emerged as an efficient alternative to deliver the reliable structural information of proteins. However, it remains a challenge to identify the best model among the many predicted by one or a few structure prediction methods. Here we report ProFitFun-Meta, a neural network based pure single model scoring method for assessing the quality of predicted model structures by an effective combination structural information of various backbone dihedral angle and residue surface accessibility preferences of amino acid residues with other spatial properties of protein structures. The performance of ProFitFun-Meta was validated and benchmarked against current state-of-the-art methods on the extensive datasets, comprising a Test Dataset (n = 26,604), an External Dataset (n = 40,000), and CASP14 Dataset (n = 1200). The comprehensive performance evaluation of ProFitFun-Meta demonstrated its reliability and efficiency in terms of Spearman’s (ρ) and Pearson’s (r) correlation coefficients, GDT-TS loss (g), and absolute loss (d). An improved performance over the current state-of-the-art methods and leading performers of CASP14 experiment in quality assessment category demonstrated its potential to become an integral component of computational pipelines for protein modeling and design. The minimal dependencies, high computational efficiency, and portability to various Linux and Windows OS provide an additional edge to ProFitFun-Meta for its easy implementation and applications in various regimes of computational protein folding. Research Network of Computational and Structural Biotechnology 2022-11-17 /pmc/articles/PMC9708444/ /pubmed/36467582 http://dx.doi.org/10.1016/j.csbj.2022.11.032 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Kaushik, Rahul
Zhang, Kam Y.J.
An integrated protein structure fitness scoring approach for identifying native-like model structures
title An integrated protein structure fitness scoring approach for identifying native-like model structures
title_full An integrated protein structure fitness scoring approach for identifying native-like model structures
title_fullStr An integrated protein structure fitness scoring approach for identifying native-like model structures
title_full_unstemmed An integrated protein structure fitness scoring approach for identifying native-like model structures
title_short An integrated protein structure fitness scoring approach for identifying native-like model structures
title_sort integrated protein structure fitness scoring approach for identifying native-like model structures
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708444/
https://www.ncbi.nlm.nih.gov/pubmed/36467582
http://dx.doi.org/10.1016/j.csbj.2022.11.032
work_keys_str_mv AT kaushikrahul anintegratedproteinstructurefitnessscoringapproachforidentifyingnativelikemodelstructures
AT zhangkamyj anintegratedproteinstructurefitnessscoringapproachforidentifyingnativelikemodelstructures
AT kaushikrahul integratedproteinstructurefitnessscoringapproachforidentifyingnativelikemodelstructures
AT zhangkamyj integratedproteinstructurefitnessscoringapproachforidentifyingnativelikemodelstructures