Cargando…
Predicting the future of neuroimaging predictive models in mental health
Predictive modeling using neuroimaging data has the potential to improve our understanding of the neurobiology underlying psychiatric disorders and putatively information interventions. Accordingly, there is a plethora of literature reviewing published studies, the mathematics underlying machine lea...
Autores principales: | Tejavibulya, Link, Rolison, Max, Gao, Siyuan, Liang, Qinghao, Peterson, Hannah, Dadashkarimi, Javid, Farruggia, Michael C., Hahn, C. Alice, Noble, Stephanie, Lichenstein, Sarah D., Pollatou, Angeliki, Dufford, Alexander J., Scheinost, Dustin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708554/ https://www.ncbi.nlm.nih.gov/pubmed/35697759 http://dx.doi.org/10.1038/s41380-022-01635-2 |
Ejemplares similares
-
Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity
por: Tejavibulya, Link, et al.
Publicado: (2022) -
(Un)common space in infant neuroimaging studies: A systematic review of infant templates
por: Dufford, Alexander J., et al.
Publicado: (2022) -
A protocol for working with open-source neuroimaging datasets
por: Horien, Corey, et al.
Publicado: (2022) -
Power and reproducibility in the external validation of brain-phenotype predictions
por: Rosenblatt, Matthew, et al.
Publicado: (2023) -
An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field()
por: Pollatou, Angeliki, et al.
Publicado: (2022)