Cargando…

Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles

OBJECTIVE: This study was aimed to investigate the role of non-neuronal cholinergic system (NNCS) in the early stage response of epithelial-mesenchymal transformation (EMT) related markers in human lung adenocarcinoma A549 cells induced by coal particles. METHODS: A549 cells were exposed to differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Meng-Yu, Shi, Xin-Chen, Shan, Jing, Wang, Rui, Wang, Yi, Li, Jie, Tian, Da-Nian, Xu, Hai-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708788/
https://www.ncbi.nlm.nih.gov/pubmed/36468138
http://dx.doi.org/10.1016/j.heliyon.2022.e11751
_version_ 1784841015685808128
author Wu, Meng-Yu
Shi, Xin-Chen
Shan, Jing
Wang, Rui
Wang, Yi
Li, Jie
Tian, Da-Nian
Xu, Hai-Ming
author_facet Wu, Meng-Yu
Shi, Xin-Chen
Shan, Jing
Wang, Rui
Wang, Yi
Li, Jie
Tian, Da-Nian
Xu, Hai-Ming
author_sort Wu, Meng-Yu
collection PubMed
description OBJECTIVE: This study was aimed to investigate the role of non-neuronal cholinergic system (NNCS) in the early stage response of epithelial-mesenchymal transformation (EMT) related markers in human lung adenocarcinoma A549 cells induced by coal particles. METHODS: A549 cells were exposed to different concentrations of GBW11110K, GBW11126D and exogenous acetylcholinesterase (AChE) (the exposure doses were determined according to the results of CCK-8 experiment, and the doses that had no significant effects on cell viability were selected) for 24 h. After exposure, the indexes of oxidative stress (SOD and MDA), inflammatory factors (IL-6 and TNF-α), EMT marker proteins (E-cadherin and vimentin), AChE enzymatic activity and mRNA expression levels of different types of acetylcholine receptors (CHRM3, CHRM5, CHRNA5, CHRNA7, CHRNA9 and CHRNB2) were determined. RESULTS: GBW11110K and GBW11126D exposure could lead to the following injury effects: the levels of oxidative stress and inflammatory factors changed to a certain extent (SOD decreased gradually, while MDA, IL-6 and TNF-α increased). The protein level of E-cadherin decreased while the vimentin level increased (P < 0.05), suggesting the occurrence of EMT. The AChE enzymatic activity decreased gradually. The expression of acetylcholine receptor mRNA changed as follows (GBW11110K/GBW11126D: CHRM3 (↑↑), CHRM5 (↓↓), CHRNA5 (↓↓), CHRNA7 (↓↓), CHRNA9 (– ↑), CHRNB2 (– –). The addition of exogenous AChE recombinant protein could antagonize the damage effects caused by the coal particles to a certain extent. CONCLUSION: The coal particle exposure could induce the change of oxidative stress response, inflammatory response and EMT related markers, down-regulate the AChE enzymatic activity, and interfere the mRNA expression levels of AChRs in A549 cells. The addition of exogenous AChE recombinant protein could reverse the above effects to a certain extent.
format Online
Article
Text
id pubmed-9708788
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-97087882022-12-01 Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles Wu, Meng-Yu Shi, Xin-Chen Shan, Jing Wang, Rui Wang, Yi Li, Jie Tian, Da-Nian Xu, Hai-Ming Heliyon Research Article OBJECTIVE: This study was aimed to investigate the role of non-neuronal cholinergic system (NNCS) in the early stage response of epithelial-mesenchymal transformation (EMT) related markers in human lung adenocarcinoma A549 cells induced by coal particles. METHODS: A549 cells were exposed to different concentrations of GBW11110K, GBW11126D and exogenous acetylcholinesterase (AChE) (the exposure doses were determined according to the results of CCK-8 experiment, and the doses that had no significant effects on cell viability were selected) for 24 h. After exposure, the indexes of oxidative stress (SOD and MDA), inflammatory factors (IL-6 and TNF-α), EMT marker proteins (E-cadherin and vimentin), AChE enzymatic activity and mRNA expression levels of different types of acetylcholine receptors (CHRM3, CHRM5, CHRNA5, CHRNA7, CHRNA9 and CHRNB2) were determined. RESULTS: GBW11110K and GBW11126D exposure could lead to the following injury effects: the levels of oxidative stress and inflammatory factors changed to a certain extent (SOD decreased gradually, while MDA, IL-6 and TNF-α increased). The protein level of E-cadherin decreased while the vimentin level increased (P < 0.05), suggesting the occurrence of EMT. The AChE enzymatic activity decreased gradually. The expression of acetylcholine receptor mRNA changed as follows (GBW11110K/GBW11126D: CHRM3 (↑↑), CHRM5 (↓↓), CHRNA5 (↓↓), CHRNA7 (↓↓), CHRNA9 (– ↑), CHRNB2 (– –). The addition of exogenous AChE recombinant protein could antagonize the damage effects caused by the coal particles to a certain extent. CONCLUSION: The coal particle exposure could induce the change of oxidative stress response, inflammatory response and EMT related markers, down-regulate the AChE enzymatic activity, and interfere the mRNA expression levels of AChRs in A549 cells. The addition of exogenous AChE recombinant protein could reverse the above effects to a certain extent. Elsevier 2022-11-23 /pmc/articles/PMC9708788/ /pubmed/36468138 http://dx.doi.org/10.1016/j.heliyon.2022.e11751 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Wu, Meng-Yu
Shi, Xin-Chen
Shan, Jing
Wang, Rui
Wang, Yi
Li, Jie
Tian, Da-Nian
Xu, Hai-Ming
Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title_full Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title_fullStr Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title_full_unstemmed Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title_short Role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in A549 cells induced by coal particles
title_sort role of non-neuronal cholinergic system in the early stage response of epithelial-mesenchymal transformation related markers in a549 cells induced by coal particles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708788/
https://www.ncbi.nlm.nih.gov/pubmed/36468138
http://dx.doi.org/10.1016/j.heliyon.2022.e11751
work_keys_str_mv AT wumengyu roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT shixinchen roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT shanjing roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT wangrui roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT wangyi roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT lijie roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT tiandanian roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles
AT xuhaiming roleofnonneuronalcholinergicsystemintheearlystageresponseofepithelialmesenchymaltransformationrelatedmarkersina549cellsinducedbycoalparticles