Cargando…

Utilization of gold nanoparticles for the detection of squamous cell carcinoma of the tongue based on laser-induced fluorescence and diffuse reflectance characteristics: an in vitro study

Squamous cell carcinoma is a very common type of oral cancer that affects the health of people with an unacceptably high mortality rate attributed to the difficulties in detecting the disease at an early stage. Therefore, effective techniques for early diagnosis and effective therapy of oral cancer...

Descripción completa

Detalles Bibliográficos
Autores principales: Nour, Maha, Hamdy, Omnia, Faid, Amna H., Eltayeb, Elsayed Abdallah, Zaky, Ahmed Abbas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer London 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708804/
https://www.ncbi.nlm.nih.gov/pubmed/36001244
http://dx.doi.org/10.1007/s10103-022-03634-9
Descripción
Sumario:Squamous cell carcinoma is a very common type of oral cancer that affects the health of people with an unacceptably high mortality rate attributed to the difficulties in detecting the disease at an early stage. Therefore, effective techniques for early diagnosis and effective therapy of oral cancer are necessary. In the present study, we exploit the ability of gold nanoparticles (AuNPs) to undergo coupled surface plasmon resonance when closely spaced to improve diagnosing squamous cell carcinoma of the tongue. The prepared AuNPs are characterized by UV–VIS spectroscopy, dynamic light scattering, Fourier transform infrared spectroscopy, and transmission electron microscopy. The size of the prepared AuNPs is 12 ± 2 nm with narrow size distributions and exhibited high stability with a zeta potential of − 16.5 mV. The light fluorescence of the normal and cancer cells is recorded before and after NP addition using a spectrometer upon excitation by 405-nm laser irradiation. Furthermore, the light reflectance of the examined samples is measured at different laser wavelengths (red to NIR region). The obtained results show that the cancer cells mixed with AuNPs produce a higher fluorescence peak at 489.2 nm than the cancer cells without AuNPs. Moreover, the optical diffuse reflectance analyses reveal that the addition of AuNPs enhances cancer detection especially at the 635-nm irradiation with sensitivity (94%), specificity (87%), and overall accuracy (91%).