Cargando…
Bistable insulin response: The win-win solution for glycemic control
To satisfy both the safety and rapidity of glycemic control, muscles’ insulin response must be bistable, as theoretically predicted. Here, we test the bistability hypothesis by combining cellular experiments (to measure the threshold values in vitro) with mathematical modeling (to test the relevance...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708922/ https://www.ncbi.nlm.nih.gov/pubmed/36465102 http://dx.doi.org/10.1016/j.isci.2022.105561 |
Sumario: | To satisfy both the safety and rapidity of glycemic control, muscles’ insulin response must be bistable, as theoretically predicted. Here, we test the bistability hypothesis by combining cellular experiments (to measure the threshold values in vitro) with mathematical modeling (to test the relevance of bistability in vivo). We examine bistability in C2C12 myotubes by both single-cell analysis (Fӧrster resonance energy transfer) and cultured cells analysis (immunoblot). These technologies demonstrate bistable insulin response, with typical switch-on and switch-off thresholds of approximately 300 and 100 pM, respectively. Our mathematical model demonstrates the indispensability of bistability in interpreting experimental data, reveals fine details of plasma glucose-insulin dynamics, and explains unclear phenomena. These results suggest that the body’s ability to simultaneously avoid both hypoglycemia and hyperglycemia is mediated by bistability. The switch-on threshold is a promising biomarker for metabolic complications due to its deep quantitative connection with body composition, which is easy to measure. |
---|