Cargando…
Sparse measures with swarm-based pliable hidden Markov model and deep learning for EEG classification
In comparison to other biomedical signals, electroencephalography (EEG) signals are quite complex in nature, so it requires a versatile model for feature extraction and classification. The structural information that prevails in the originally featured matrix is usually lost when dealing with standa...
Autores principales: | Prabhakar, Sunil Kumar, Ju, Young-Gi, Rajaguru, Harikumar, Won, Dong-Ok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709410/ https://www.ncbi.nlm.nih.gov/pubmed/36465961 http://dx.doi.org/10.3389/fncom.2022.1016516 |
Ejemplares similares
-
A Fusion-Based Technique With Hybrid Swarm Algorithm and Deep Learning for Biosignal Classification
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
A Framework for Text Classification Using Evolutionary Contiguous Convolutional Neural Network and Swarm Based Deep Neural Network
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022) -
Schizophrenia EEG Signal Classification Based on Swarm Intelligence Computing
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2020) -
A Holistic Performance Comparison for Lung Cancer Classification Using Swarm Intelligence Techniques
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2021) -
A Holistic Strategy for Classification of Sleep Stages with EEG
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2022)