Cargando…
Machine learning models to predict in-hospital mortality in septic patients with diabetes
BACKGROUND: Sepsis is a leading cause of morbidity and mortality in hospitalized patients. Up to now, there are no well-established longitudinal networks from molecular mechanisms to clinical phenotypes in sepsis. Adding to the problem, about one of the five patients presented with diabetes. For thi...
Autores principales: | Qi, Jing, Lei, Jingchao, Li, Nanyi, Huang, Dan, Liu, Huaizheng, Zhou, Kefu, Dai, Zheren, Sun, Chuanzheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709414/ https://www.ncbi.nlm.nih.gov/pubmed/36465642 http://dx.doi.org/10.3389/fendo.2022.1034251 |
Ejemplares similares
-
A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis
por: Li, Jian, et al.
Publicado: (2021) -
Lipoxin A4 receptor agonist BML-111 induces autophagy in alveolar macrophages and protects from acute lung injury by activating MAPK signaling
por: Liu, Huaizheng, et al.
Publicado: (2018) -
A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning
por: Yang, Boshen, et al.
Publicado: (2022) -
The predictive values of admission characteristics for 28-day all-cause mortality in septic patients with diabetes mellitus: a study from the MIMIC database
por: Yang, Chengyu, et al.
Publicado: (2023) -
Prediction model for gestational diabetes mellitus using the XG Boost machine learning algorithm
por: Hu, Xiaoqi, et al.
Publicado: (2023)