Cargando…
Brain-inspired Predictive Coding Improves the Performance of Machine Challenging Tasks
Backpropagation has been regarded as the most favorable algorithm for training artificial neural networks. However, it has been criticized for its biological implausibility because its learning mechanism contradicts the human brain. Although backpropagation has achieved super-human performance in va...
Autores principales: | Lee, Jangho, Jo, Jeonghee, Lee, Byounghwa, Lee, Jung-Hoon, Yoon, Sungroh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709416/ https://www.ncbi.nlm.nih.gov/pubmed/36465966 http://dx.doi.org/10.3389/fncom.2022.1062678 |
Ejemplares similares
-
Flexible Dual-Branched Message-Passing Neural Network
for a Molecular Property Prediction
por: Jo, Jeonghee, et al.
Publicado: (2022) -
Large-scale machine learning of media outlets for understanding public reactions to nation-wide viral infection outbreaks
por: Choi, Sungwoon, et al.
Publicado: (2017) -
GeoT: A Geometry-Aware
Transformer for Reliable Molecular
Property Prediction and Chemically Interpretable Representation Learning
por: Kwak, Bumju, et al.
Publicado: (2023) -
Comprehensive ensemble in QSAR prediction for drug discovery
por: Kwon, Sunyoung, et al.
Publicado: (2019) -
Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2016)